Chemical Bond

Born-Oppenheimer Approximation

Fig. 8.1 A typical molecular potential energy curve for a diatomic species.

- The nuclei are much more massive than the electrons and hence move much slower
- Thus nuclei can be considered stationary while electrons move in their field
- We think of nuclei remaining fixed at arbitrary locations and then solve the Schrödinger equation for the wavefunctions of the electrons alone
- The molecular potential energy curve (adjacent figure) is so called because the kinetic energy of the stationary nuclei is zero.

Hydrogen molecule ion wave functions

The spatial wavefunction on each of two H atoms forms linear combinations:

The atomic wave functions form linear combinations to make molecular orbital wave functions.

$$Y_{\pm} = 1s_{A} \pm 1s_{B}$$

(a) Wave functions combined for σ_{1s}

(c) Wave functions combined for σ_{1s}^*

(b) Bonding probability density

(d) Antibonding probability density

Diagram of H₂⁺ energy levels

Note that the anti-bonding level is more destabilizing than the bonding level is stabilizing.

